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ABSTRACT
Wind turbine wakes are the most significant factor affecting wind farm performance, decreasing energy production and increasing fatigue
loads in downstream turbines. Wind farm turbine layouts are designed to minimize wake interactions using a suite of predictive models,
including analytical wake models and computational fluid dynamics simulations (CFD). CFD simulations of wind farms are time-consuming
and computationally expensive, which hinder their use in optimization studies that require hundreds of simulations to converge to an optimal
turbine layout. In this work, we propose DeepWFLO, a deep convolutional hierarchical encoder–decoder neural network architecture, as an
image-to-image surrogate model for predicting the wind velocity field for Wind Farm Layout Optimization (WFLO). We generate a dataset
composed of image representations of the turbine layout and undisturbed flow field in the wind farm, as well as images of the corresponding
wind velocity field, including wake effects generated with both analytical models and CFD simulations. The proposed DeepWFLO architecture
is then trained and optimized through supervised learning with an application-tailored loss function that considers prediction errors in both
wind velocity and energy production. Results on a commonly used test case show median velocity errors of 1.0%–8.0% for DeepWFLO
networks trained with analytical and CFD data, respectively. We also propose a model-fusion strategy that uses analytical wake models to
generate an additional input channel for the network, resulting in median velocity errors below 1.8%. Spearman rank correlations between
predictions and data, which evidence the suitability of DeepWFLO for optimization purposes, range between 92.3% and 99.9%.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168973

I. INTRODUCTION

Wind energy, which currently meets ∼6% of global energy
demand, is expected to significantly grow over the next two decades,
reaching an estimated 33% share by 2050.1 This expected growth
highlights the need for systematic research efforts to improve wind
energy efficiency, reduce its costs, mitigate environmental impacts,
and increase equipment and infrastructure lifetime, among others.

The most significant factor affecting wind farm performance
is the aerodynamic interaction between turbines due to wakes that
develop, propagate, and expand downstream of each turbine. Given
the expected expansion of wind energy generation capacity, com-
bined wake effects from both individual wind farms and wind farm

clusters may affect transport mechanisms in the atmospheric bound-
ary layer (ABL) and, in turn, reduce overall energy generation.2 In
this context, improved understanding and multi-scale modeling of
turbine wakes will be necessary to maximize the energy extraction
and minimize environmental impact of large-scale exploitation of
wind energy resources.

At present, wind farms are designed using a portfolio of wake
models with different levels of fidelity, including analytical wake
models and 3D turbulent Computational Fluid Dynamics (CFD)
simulations for the wind farm3 and the ABL.2 Leveraging these mod-
els, the location, layout, and size of the farm can be designed to
maximize energy extraction,4,5 minimize infrastructure costs and
land use,6–8 and even reduce noise levels.9 Wake models are also
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used for turbine-level and farm-level real-time control,10–13 which
has a significant impact on both energy generation and turbine
lifetime.14

Computational Fluid Dynamics (CFD) is currently the most
accurate method for predicting energy production in wind
farms, especially in complex terrains.15 However, full-scale, three-
dimensional, turbulent flow simulations of wind farms and wind
farm clusters are time-consuming and computationally expensive,
typically requiring days of simulation time even in parallel comput-
ing environments16 for a single simulation under nominal condi-
tions. Computational costs are further increased when calculating
the annual energy production (AEP) of wind farms, which requires
many simulation runs under different boundary conditions corre-
sponding to the site-specific statistical distribution of wind velocity.
To overcome the computational cost of wind farm design and opti-
mization, a suite of models with varying levels of fidelity,17,18 such as
physics-driven reduced order models19,20 and data-driven surrogate
models,21,22 are used.

Machine Learning (ML) methods have been extensively used
in the context of surrogate-based design optimization (SBDO)23

to reduce the use of computationally expensive CFD simulations
in parametric studies, design exploration, optimization, and sen-
sitivity analysis.24 This results in an overall reduction in the time
and resources required for the design and optimization of com-
plex systems. Among a variety of ML methods, state-of-the-art
neural networks have recently received the most attention due to
advances in architectures and associated training methods. In par-
ticular, neural networks have shown great potential in physics-based
applications, i.e., predicting spatiotemporal physical fields (e.g., tem-
perature, pressure, flow velocity, etc.) and derived quantities (e.g.,
shear stress, drag/lift forces, heat flux, etc.), based on low-resolution
measurement data from a system of interest or a physical proto-
type, high-resolution data from computer simulations of a virtual
prototype, or both.

Two main approaches have been used in the literature to
leverage computer simulation data for training neural networks
for physics-based applications. In the first approach, referred to
in the literature as Physics-Informed Neural Networks (PINNs),
spatiotemporal coordinates and boundary conditions are used as
inputs to traditional feed-forward neural network architectures.25,26

The networks are then trained to predict physical fields of interest
by minimizing a modified loss function that may combine predic-
tion errors with respect to training data and boundary conditions
and residuals resulting from substituting the network predictions
into the partial differential equations that govern the behavior of
the system. To date, PINNs have been successfully demonstrated
on canonical 1D and 2D boundary value problems,27,28 external
laminar fluid flow around arbitrary objects29 and, with limited suc-
cess, turbulent fluid flow.30,31 The second approach uses image
representations of the field variables and leverages neural network
architectures commonly used in computer vision tasks. One exam-
ple of this approach is Image-to-Image (Im2Im) regression, in which
both the inputs and outputs of the neural network are images.
For instance, an encoder–decoder neural network architecture was
used32,33 to generate image representations of the two components
of the velocity field within a 2D heterogeneous porous media, using
an image of the porosity field as an input to the network. Results
showed that the Im2Im regression exhibited better prediction

accuracy than PINNs. Notably, the authors obtained accurate pre-
dictions of the pressure field by integrating Darcy’s Law based on the
predicted velocity fields, even though images of the pressure fields
were not used to train the network.

There have been several studies leveraging neural networks for
wake modeling in wind farms. Ti et al.34 used a set of 2000 single-
layer, ten-neuron artificial neural networks, each network trained
independently and in parallel to predict the velocity deficit and add
turbulence intensity at a specific location downstream of a wind tur-
bine, using as inputs the inflow velocity and turbulence intensity at
hub height. Their results showed good agreement with both simu-
lation and measurement data. An alternative approach focusing on
dynamic wake models was proposed by Zhang and Zhao,35 who used
a long-short term memory (LSTM) recurrent neural network to pre-
dict the evolution of a reduced-order representation of the flow field
created with proper orthogonal decomposition, using inflow veloc-
ity and the turbine yaw angle as inputs to the model. Pawar et al.36

also used reduced order models to decrease the dimensionality of
the flow field data, which in their case was generated exclusively
with analytical wake models. In their approach, a neural network
is used to predict the principal components of the reduced-order
flow field, using as input the incoming velocity, turbulence inten-
sity, and yaw angle. To handle data with different levels of fidelity,
the authors layered two of their networks, the first mapping inputs
to the principal components of the low-fidelity data and the second
network to map these components to the principal components of
the high-fidelity data. In another example,37 a generative adversar-
ial network (GAN) was trained to predict images of the 2D flow
field around a single turbine under mean turbulent flow. The GAN
used as inputs the turbine yaw angle and the incoming stream-
wise velocities at 32 uniformly distributed points upstream of the
turbine and was trained with CFD-generated data to predict both
streamwise and spanwise velocity fields. Results showed GANs could
accurately predict both velocity components under a variety of yaw
conditions.

In this paper, we propose a methodology for fast, accurate pre-
diction of the flow field in wind farms for WFLO studies using an
Im2Im regression paradigm. Specifically, we propose and optimize
a deep convolutional hierarchical encoder–decoder neural network
architecture, named DeepWFLO hereafter, that uses images of the
turbine layout and undisturbed flow field as inputs and gener-
ates an image of the resulting flow field, taking into account wake
generation, propagation, and interactions between multiple wakes.
Therefore, the proposed approach can naturally handle wind farms
with arbitrary layout arrangements, in contrast with previous work
that focused on predicting the flow field behind a single turbine. Fur-
thermore, we characterize how modeling decisions regarding spa-
tial resolution, velocity encoding, and training loss function affect
the performance of the proposed network architecture. Finally,
we evaluate the effectiveness of the proposed architecture for the
hierarchical integration of wind farm models of varying fidelity,
combining closed-form analytical wake model predictions and CFD
data through a variety of transfer learning strategies.

II. PROBLEM DEFINITION
In the remainder of this paper, we will focus on predicting the

flow field within a wind farm, including the effect of turbine wakes,
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for the purpose of calculating the AEP to support wind farm design
optimization and control. Namely, given

(a) a set of turbine locations, represented as a grayscale image of
a 2D top-view of turbine locations on a rectangular wind farm
terrain and

(b) the undisturbed (free stream) wind velocity within the wind
farm terrain, encoded as a grayscale (one channel) or color
(three channel) image,

the goal is to generate an image representing the streamwise velocity
field within the wind farm, encoded as a grayscale or color image
with a suitable mapping between wind velocity and image pixel
intensities, and to calculate the AEP of the farm from that image.

Although our objective is to use this methodology in 3D appli-
cations for the design, optimization, and control of large scale wind
farms in complex terrains, in this paper, we focus, without loss
of generality, on evaluating the feasibility and performance of the
proposed methodology based on flow predictions from analytical,
closed-form wake models and 2D turbulent CFD simulations. In
addition, we assume the wind direction is from left to right since
any other wind direction can be modeled by rotating the layout (or
its image representation) accordingly.

III. METHODS
A. Flow field predictions

The basis of this data-driven approach to the prediction of
the flow field and power output in wind farms is a comprehen-
sive dataset of 2D, turbulent flow simulations of wind farms with
multiple turbines and under multiple incoming wind velocities.
For the purpose of feasibility testing and problem characteriza-
tion, however, we also use 2D analytical models for wind farm
wakes to generate the required data at a lower computational
cost.

Among several analytical wake models proposed in the liter-
ature, e.g., Refs. 20 and 38, in this work, we build on the Jensen39

and Gaussian19 wake models. Although the Jensen model is gener-
ally considered to be the least accurate of the analytical wake models,
our rational for using it in this work is threefold. First, our focus
in this work is to generate a dataset that captures the main fea-
tures of the phenomena of interest, namely wake propagation and
wake interactions. Such a dataset, even if it has low fidelity, allows
us to assess the feasibility of using the proposed encoder–decoder
networks to capture this behavior accurately. Second, having a
low-fidelity wake model allows us to assess the performance of
transfer learning strategies to provide a framework for integrat-
ing predicting models with different levels of fidelity, in this case,
using the lowest-fidelity analytical wake model and high fidelity
CFD simulations. Finally, using the Jensen model allows for easier
comparison with previous work in the wind farm layout optimiza-
tion (WFLO) literature, which has primarily relied on the Jensen
model.

In the remainder of this section, we briefly describe the models
used for flow field prediction. Detailed descriptions of these models
can be found in the cited literature and, for the CFD model, in the
supplementary material.

1. Jensen wake model
Jensen’s model assumes that the wake region expands linearly

in the downstream direction and that the velocity profile inside the
wake in the spanwise direction is uniform and transitions sharply
to the freestream wind velocity at the wake boundary; this has been
typically referred to as a “top hat” profile. The Jensen model uses the
Betz Law to relate wind velocity before and after the turbine rotor.
Under the assumption of turbines operating at maximum power
coefficient, the wind velocity at any point downstream of the turbine
can be calculated as

u = u0(1 − 2
3
( rr

rr + αx
)

2
), (1)

where α is the wake decay constant, calculated as

α = 0.5
log z

z0

, (2)

where z is the hub height and z0 is the roughness length of the ter-
rain. For any points inside the wind farm domain that are under
the effect of multiple wakes, the combined effect of the wakes is
calculated as the sum of squared velocity deficits,40 namely

u(x) = u0

⎡⎢⎢⎢⎢⎣
1 −
¿
ÁÁÀ n

∑
i=1
(1 − ui(x)

u0
)

2⎤⎥⎥⎥⎥⎦
. (3)

2. Gaussian wake model
The Gaussian wake model assumes that, at any downstream

position inside the wake of a turbine, the wind speed deficit profile is
Gaussian-shaped. Therefore, the wind speed deficit becomes a func-
tion of both axial and radial positions with respect to the turbine.
By assuming self-similarity in the wake, the normalized wind speed
deficit can be expressed as

ΔU
U∞
= C(x) exp

r2

2σ2 , (4)

or alternatively,

Uw(x, r) = U∞(1 − C(x) exp
r2

2σ2 ), (5)

where σ is akin to a standard deviation, i.e., a measure of the spread
of the Gaussian-shaped profile, Uw(x, r) is the wake velocity, C(x) is
the maximum normalized velocity which occurs at the center of the
wake, and (x, r) are streamwise and radial coordinates relative to the
turbine hub and centerline, respectively.

By neglecting viscous and pressure terms in the mass and
momentum equation and using T = 0.5CTρA0U2

∞ to calculate the
total thrust force acting on the turbine, with A0 being the swept
area by the turbine blades, and CT the thrust coefficient for which
the power is maximized (CT = 8/9), the following equation can be
obtained for the normalized velocity deficit:

ΔU/U∞ = (1 −
√

1 − CT

8(k∗x/d0 + ε)2 )

× exp(− 1
2(k∗x/d0 + ε)2 [(

z − zh

d0
)

2
+ ( y

d0
)

2
]), (6)
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where k∗ = ∂σ
∂x is the growth rate of the wake spread and was found

to range from 0.023 to 0.055, based on the calibration of this model
with respect to LES results obtained using surface roughness val-
ues in the range 0.00005–0.5 m. In Eq. (6), ε = σ(x = 0) is the wake
spread immediately after the turbine and can be calculated as

ε = 0.25
√

β, (7)

where

β = 1
2

1 +
√

1 − CT√
1 − CT

. (8)

3. Computational fluid dynamics model
The governing equations of our CFD simulations are the

Reynolds-averaged Navier–Stokes equations for incompressible,
steady, turbulent flows, where the transport equations of turbulence
quantities are closed using the shear-stress transport (SST) κ − ω tur-
bulence model. In these simulations, the wind turbines are modeled
using actuator disks, and flow conditions (pressure and velocity) are
specified on the four boundaries of the 2D domain. OpenFOAM is
used to solve the model equations on a high performance comput-
ing cluster, with each simulation taking ∼30 min on a single 2.1 GHz
Intel Xeon processor with 24 cores. The testing and validation of
our CFD model were conducted in previous studies with geometric,
operating, and atmospheric conditions consistent with those used in
the present work.42,42 Further details of the CFD model can be found
in the supplementary material.

4. Annual energy production (AEP)
Based on the velocity field calculated with any of the models

described earlier, the annual energy production (in kW h) of the
wind farm can be approximated as

AEP = 8766
k

∑
i=1
∑
d∈D

1
3

u3
idpd, (9)

where i is an index over the number of turbines, d is an index over
the magnitude and direction of wind velocity states, pd is the proba-
bility of each wind state, 8766 is the number of hours in a year, and
uid is the effective velocity at the turbine location in ms−1. This effec-
tive velocity is directly extracted from the calculated flow field in the
case of analytical or computational wake models. In contrast, when
using the proposed image-based approach, we extract the effective
velocities at the turbine sites from the flow field image using an
image mask corresponding to the turbine locations. The resulting
masked image contains pixel intensities equal to zero at all locations
except where turbines are located, wherein the pixel level intensi-
ties correspond to the normalized flow velocity. These pixel-level
intensities are denormalized and used with Eq. (10) to calculate the
AEP.

B. DeepWFLO: Image-to-image regression
with encoder–decoder neural networks

To enable fast, accurate, real-time prediction of wind flow
in large-scale wind farms, we propose DeepWFLO, a deep con-
volutional hierarchical encoder–decoder neural network to predict
the streamwise velocity field inside wind farms with arbitrary tur-
bine layouts using an Im2Im approach. Due to its encoder–decoder
architecture, DeepWFLO conveniently combines the tasks of non-
linear, multi-scale encoding of inputs into a lower-dimensional
feature space and surrogate modeling from that space to the out-
puts into a single task of supervised learning. In what follows, we
assume that the system of partial differential equations (PDEs) gov-
erning fluid flow in the wind farm is solved over a discrete set of
spatial locations X = {xi, . . . , xk}, X ∈ Rdx , where xi is a vector of
spatial coordinates of dimension dx and k is the number of discrete
grid locations.

DeepWFLO considers as inputs (1) the source term f (x)/ρ
of the Navier–Stokes PDE that models the interaction between the
turbines and the flow field and (2) the undisturbed wind veloc-
ity u∞(x), representing the flow field in the wind farm terrain

FIG. 1. Sample DeepWFLO architecture, used as the baseline model in this paper. Blue arrows indicate hierarchical connections, which are absent in DenseED networks.
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with the turbines absent. Without loss of generality, we assume
that all quantities of interest are represented as computer images
of size H ×W, i.e., over a regular 2D grid with k = H ×W pixels,
noting that CFD simulation results on unstructured meshes are rou-
tinely mapped to regular grids for display and analysis on computer
screens. Hereafter, the DeepWFLO inputs will be treated as differ-
ent image channels, using terminology commonly used to refer to
the red, green, and blue (RGB) channels used to encode digital color
images. Similarly, the output of the model is the resulting streamwise
velocity field u(x), including turbine wake effects; thus, the output
of the neural network will be an image with one channel. Natural
extensions of this formulation to multiple outputs, e.g., predicting
the spanwise velocity and pressure fields or predicting 3D fields, will
be considered in a future publication.

Figure 1 shows an instance of the proposed DeepWFLO archi-
tecture, which will be used as a baseline model for this paper. The
input, an image representation of a turbine layout, passes through
an initial convolution layer that generates several feature maps with
the same size as the input image. These feature maps are then fed
through an alternating sequence of dense blocks that generate non-
linear feature maps and transition (encoding or decoding) blocks
that change the size of the feature maps. Dense blocks, shown in
Fig. 2(a), consist of a sequence of L sub-blocks. Each sub-block
[Fig. 2(b)] is a fixed sequence of batch normalization (BN), ReLU,
and convolution (Conv) operations that preserve the size of the
feature maps and are represented by a single rectangular box in

Figs. 2(c) and 2(d). Within each dense block, each sub-block uses as
input a concatenation of the output of all previous sub-blocks with
the same image size, i.e., all sub-blocks within the same block. This
results in a linear increase in the number of feature maps between
any two consecutive sub-blocks, with the rate of increase K referred
to as the growth rate. Dense blocks are connected with each other
through transition blocks that change the size of the feature map
by 0.5X and 2X in the encoding [Fig. 2(c)] and decoding [Fig. 2(d)]
paths, respectively. Comparing Figs. 2(c) and 2(d), it can be noted
that the only difference between the architecture of the encoding
and decoding blocks is the use of transposed convolution (ConvT)
operations in the decoding paths, which implement the required
upsampling of the feature maps.

The proposed DeepWFLO architecture is based on the
DenseED architecture32 and, therefore, also combines innovations
introduced in image segmentation and Im2Im regression tasks over
the last decade. First, DeepWFLO implements the DenseNet archi-
tecture,43 in which each layer receives as input all the feature maps
of the previous layers that share the same image size. This dense
connectivity pattern improves information flow, explicitly reuses
feature maps, and addresses the vanishing gradient issues that plague
strictly sequential deep networks. Second, DeepWFLO is fully con-
volutional, doing away with fully connected layers of ReLU units
and instead using convolution and upsampling layers to generate
output images of the same resolution as the input images. Finally,
DeepWFLO implements symmetric downsampling and upsampling

FIG. 2. Details of the inner blocks of the baseline architecture. (a) Dense block. (b) Sub-block. (c) Encoding block. (d) Decoding block.
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paths to directly generate predictions with the same image size as
the inputs, similar to U-Nets.44 In contrast to U-Nets, however,
DeepWFLO uses strided convolutions in the decoding and encoding
blocks instead of the max pool operations used in previous work.44

In contrast with the DenseED architecture, however, Deep-
WFLO includes hierarchical connections between the encoding and
decoding paths, shown as blue lines in Fig. 2. These connections
were absent in the DenseED architecture due to the weak correspon-
dence between the input (permeability) and output (flow velocities
and pressures) fields in that application (flow in porous media). In
the WFLO application, on the other hand, there is a stronger corre-
spondence between the input (turbine locations, each a source/sink
term in a parabolic PDE) and output (streamwise velocity) fields
due to the convection-dominated nature of the parabolic PDE, the
strength of the source/sink terms, and the large-scale nature of the
wake structures. Therefore, including these hierarchical connections
effectively ensures that this strong correspondence between inputs
and outputs is preserved and exploited at every scale, allowing both
global and local features to influence the network output. Second,
we changed the size of the convolution filters in the dense blocks,
increasing their receptive fields beyond the 3 × 3 size that was used
in DenseEDs.32 This modification is supported by the fact that wake
effects extend for large distances in the domain, and small convo-
lution filters would not be able to propagate these effects beyond
a small region around any given turbine at any given convolution
layer. We present a performance comparison between the original
DenseED and DeepWFLO architectures in Sec. V D.

IV. TEST CASE
We evaluate the performance of the proposed DeepWFLO

architecture with a test case that has been commonly used in the
literature for wind farm layout optimization methods, e.g., Refs. 5,
9, and 45–48, to ensure consistency and comparability with previous
work.

The selected test case consists of a wind farm in a flat rectan-
gular terrain with dimensions of 2.0 × 2.0 km2. In this terrain, a
set of identical turbines is placed, with the number of turbines typ-
ically ranging from 10 to 40. Turbines are randomly placed within
the wind farm terrain while enforcing a minimum inter-turbine dis-
tance constraint of 2D, where D is the diameter of the turbine rotors.
Turbine and terrain parameters are included in Table I and are con-
sistent with previous work. The wind resource for this test case is
considered to be a spatially uniform and constant wind velocity com-
ing from the West. We considered wind velocity values in the range
of 5.0–15.0 m/s.

TABLE I. Turbine and wind farm characteristics for the selected test case.

Parameter Value

Turbine diameter (D) 80 m
Turbine hub height (H) 60 m
Thrust coefficient (Ct) 0.88
Turbine power curve 0.3u3 kW
Wind farm terrain size (W × L) 2.0 × 2.0 km
Terrain roughness length (z0) 0.3 m

This test case was used to generate the dataset used in this work.
Specifically, a total of 1024 training samples were generated, each
consisting of a random turbine layout image with a random num-
ber of turbines in the range of 5–30 and its corresponding flow field
image predicted with the Jensen model. A subset of 128 of these ran-
dom layouts was also evaluated with the CFD model and used to
train the models described in Sec. V F. To ensure the adequacy of
this dataset for our application, we quantified the amount/degree of
wake interactions present in the dataset. Among the 1024 images,
wake regions covered ∼42.4% of their pixels (range 14.66%–61.97%);
this corresponded to ∼45.85% of the turbines being in the wake of at
least one upstream turbine (range 7.14%–70.83%).

V. RESULTS AND DISCUSSION
The results presented below explore the feasibility of the pro-

posed DeepWFLO architecture and characterize its performance
based on data generated with the Jensen analytical wake model,
unless otherwise noted.

A. Spatial resolution and velocity encoding errors
To explore alternative problem representations and estimate

the performance limits of the proposed methodology, we quantified
the effects of spatial resolution and velocity encoding on prediction
accuracy. We generated 1024 turbine layouts by randomizing the
number of turbines in the layout, their continuous-variable coor-
dinates, and the incoming wind velocity within the wind farm. For
each turbine layout, we predict the wind velocity at the spatial loca-
tion corresponding to each image pixel using the Jensen model and
encode this velocity value as an image intensity. The resulting image
is saved to a file, reloaded, and the image intensities are mapped back
to real-valued wind velocity at the turbine locations. Note that, as
these steps do not involve any neural network model training, any
differences in wind velocity values are solely caused by encoding and
decoding operations.

Results from these tests (included in the supplementary
material) show that velocity errors caused by spatial encoding are
∼4% for continuous-variable turbine coordinates and decrease to
0.1% when turbine coordinates are defined as discrete variables and
restricted to pixel corners. Velocity encoding errors are in the range
of 0.1%–0.25% when velocity values are encoded into pixel intensi-
ties as integers. These errors can be reduced to 0.06% if the velocity
field is normalized by the incoming wind velocity prior to encoding,
and further reduced to 0.05% when velocity values are encoded into
pixel intensities as floats. Based on these results, in the remainder of
the paper, we restrict turbine positions to pixel corners and encode
normalized velocity values as floats.

B. Loss functions
The definition of appropriate loss functions is a critical but

often overlooked step in successful surrogate modeling efforts. This
is particularly true in applications of deep neural networks to engi-
neering systems whose behavior is governed by physical laws. The
standard practice for encoder/decoder networks is to minimize
an MSE of pixel-level differences between the decoded and target
images. In this application, pixel intensity values represent veloc-
ity, so this, in effect, would calculate the MSE of predicted velocity

APL Mach. Learn. 2, 016111 (2024); doi: 10.1063/5.0168973 2, 016111-6

© Author(s) 2024

 16 February 2024 09:03:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

values. However, an important application of wind velocity predic-
tions is the calculation of AEP. Hence, we formulated an alternative
loss function that included the error in AEP as predicted from the
decoded image with respect to the target AEP predicted by either
the analytical or CFD models used in this work.

Specifically, we added an additional error term to the training
loss L, representing the error in predicting power from the dis-
cretized flow field, creating a weighted combination of velocity and
AEP errors. Then, we trained a set of DeepWFLO networks using the
baseline architecture (Fig. 1), varying the relative weighting between
the two error terms,

L = ωAEPMSEAEP + (1.0 − ωAEP)MSEU , (10)

where ωAEP ∈ [0, 1]. Note that both MSEAEP and MSEU are normal-
ized independently before the calculation of the loss function using
a rolling estimate of their maximum value over the preceding five
epochs.

Figure 3 shows the resulting velocity and power errors from
network predictions evaluated over the testing dataset when the net-
works are trained with different sets of weights for each term. The
horizontal axis of this figure shows the relative weight of the power
term (ωAEP), and the two vertical axes show the resulting errors in
wind speed and AEP. Including the AEP error as part of the loss
function with ωAEP ∈ [0.0, 0.8] improves the accuracy of the network
when predicting AEP, reducing AEP errors from 2.7% to 1% with-
out increasing the prediction error for wind velocity. For values of
ωAEP > 0.8, it can be observed that the velocity error increases as
the AEP error decreases further. We hypothesize that this is due to
the fact that when the loss function considers only velocity errors,
it gives equal weight to predictions in all areas of the wind farm.
Therefore, the network captures wake patterns comprehensively,
resulting in accurate predictions for velocity and, consequently, for
AEP estimations based on the predicted velocity. However, adding
the AEP error to the loss function increases the importance of accu-
rate prediction of wind velocity in areas of the image immediately

FIG. 3. Errors for different loss function weights over the test data.

surrounding the turbine locations, thus resulting in improved AEP
predictions without an adverse impact on velocity errors. Therefore,
this loss function, with ωAEP = 0.8, is used for the remainder of the
paper.

C. Neural architecture search
To fine-tune the DeepWFLO architecture, we conducted a

formal network architecture search using NSGA-Net,49 a multi-
objective genetic algorithm for architecture optimization. A detailed
description of the architecture search process and the result-
ing Pareto set of network architectures are included in the
supplementary material. Briefly, we considered as optimization vari-
ables the number of encoding/decoding blocks, the number of dense

FIG. 4. Selected optimal DeepWFLO architecture.
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blocks, and the internal architecture of each of these blocks. As opti-
mization objectives, we chose to maximize the prediction accuracy
(RMSE) of the resulting network while minimizing network size.

The optimal DeepWFLO architecture, selected from among the
Pareto set, is shown in Fig. 4, which has the lowest RMSE over a
dataset not used for training. This architecture contains dense blocks
with 7 × 7 convolutions, stride 1, and padding as necessary to pre-
serve image sizes within a given block. This architecture was trained
on a desktop system with 16 GB RAM and a NVIDIA Quadro
RTX5000 GPU with 16 GB or VRAM. On this system, training the
DeepWFLO model on 256 images took 2008.96 s. The inference time
for the trained model was 0.0133 s/image.

D. Dataset size
Figure 5 compares the learning curves for the optimal Deep-

WFLO architecture and the baseline DenseED-c8 architecture32

for different image resolutions. Learning curves typically show the
behavior of a performance metric as a function of the size of the
dataset. It can be observed that the optimal architecture exhibits
lower velocity and AEP errors than the baseline DenseED-c8 archi-
tecture. Importantly, the optimal DeepWFLO architecture is less
sensitive to the image resolution, regardless of the number of images
used for training, as evidenced by a lower dispersion between curves
corresponding to different image resolutions.

Regarding the effect of dataset size, it can be observed that the
optimal DeepWFLO architecture is 2X to 4X more data-efficient,
reaching velocity errors under 0.2% and AEP errors under 5% with
only 64 training images, an error level that required at least 256
images for DenseED-c8. In addition, the decreasing slope of the
learning curves is evidence of the diminishing returns of larger train-
ing dataset sizes. Overall, the combination of low velocity and AEP
errors and low learning curve slopes provides evidence that the pro-
posed DeepWFLO architecture has sufficient capacity to capture the
underlying behavior of the velocity field and that it can do so with a
dataset containing between 256 and 512 images of the flow field in a

wind farm with arbitrary turbine layouts. It is important to note that
the number of estimable parameters in the proposed DeepWFLO
architecture is only weakly dependent on the image resolution, given
the convolutional nature of the network and the absence of fully con-
nected layers of ReLU units. Specifically, the number of parameters
depends on the image resolution only through the number of encod-
ing/decoding blocks and the desired size of the final encoded image,
i.e., the size of the bottleneck latent space.

E. Power prediction
The results presented so far have been based on comparisons

of accuracy expressed in terms of average errors for wind velocity
and AEP predictions. In this section, we show in more detail the
prediction errors for AEP, which are of particular importance for
the application of the DeepWFLO architecture in wind farm layout
optimization.

Figure 6 compares AEP values predicted by DeepWFLO mod-
els with those predicted by the Jensen [Figs. 6(a) and 6(b)] or
Gaussian [Figs. 6(c) and 6(d)] analytical wake models used to gen-
erate the data upon which each DeepWFLO model was trained.
Guided by the results of the previous sections, both DeepWFLO
models were trained with 256 images with a resolution of 400 px
× 400 px. For performance evaluation, a total of 1.000 random
layouts not included in the training dataset were used. It can be
observed that the median AEP error of the model is just below 1.0%.
Importantly, the Spearman correlation between the reference and
predicted AEP values, which is based on rank-ordered AEP data,
is 99.9% in both cases. In other words, the trained DeepWFLO
model is capable of accurately ranking layouts according to their
AEP ∼99.9% of the time. Overall, these results provide evidence of
the ability of the proposed architecture to accurately capture wake
patterns, both idealized (linear expansion, top-hat wake profile) and
more realistic (non-linear expansion, Gaussian wake profile).

FIG. 5. Effect of dataset size and image resolution on wind velocity and AEP errors for baseline and optimal architectures. (a) Velocity and AEP errors, DenseED-c8
architecture.32 (b) Velocity and AEP errors, optimal DeepWFLO architecture (Sec. V C).

APL Mach. Learn. 2, 016111 (2024); doi: 10.1063/5.0168973 2, 016111-8

© Author(s) 2024

 16 February 2024 09:03:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 6. Comparison of AEP predictions for 1000 arbitrary turbine layouts not used for training. DeepWFLO model trained on Jensen wake data vs Jensen model; (c) and
(d) DeepWFLO model trained on Gaussian wake data vs Gaussian model. (a) Predicted vs reference, Jensen data. (b) AEP errors, Jensen data. (c) Predicted vs reference,
Gaussian data (d) AEP errors, Gaussian data.

F. CFD data
After demonstrating the feasibility and performance of the pro-

posed DeepWFLO architecture for the prediction of wind farm
wakes based on data generated with analytical wake models, in this
section, we use data generated with CFD simulations, as described
in Sec. III A 3. A total of 128 CFD simulations were conducted, and
the resulting images were split into training (80%), validation (10%),
and testing (10%) datasets.

Several strategies were used for creating these models, lever-
aging results from Sec. V E, with the goal of defining the most
data-efficient strategy to create accurate models based on the small-
est possible CFD dataset. First, in what we refer to as the CFD Only
strategy, we use the optimal network architecture from Sec. V C and
train it with CFD data following best practices for data splitting,
weight initialization, normalization, etc. Second, we use a Warm
Start strategy in which we use the optimal weights from the network
models trained with analytical wake predictions (Jensen or Gaus-
sian) as the initial weights for training the network based on CFD
data. Third, we use a Transfer Learning strategy in which, start-
ing from the optimal network based training with analytical wake
images, only the first encoding layer and last decoding layer are
trained with the CFD data, the rest of the layers being frozen. Finally,
a Model Fusion strategy is implemented by adding an additional

input: a network that is trained with CFD data. The additional input
is again generated from either Jensen or Gaussian wake models. For
all strategies, training hyperparameters are kept the same as used
for the results in the previous sections. All strategies exhibited simi-
lar computational costs, with model-fusion showing the largest cost,
taking 1188.51 s for training on 104 images from CFD results on the
same hardware mentioned in Sec. V C. Inference time remained at
0.0133 s/image since the same optimal DeepWFLO architecture was
used for all results in this section.

Figure 7 provides a visual representation of the speed and AEP
error distributions over the CFD test dataset for the four strategies
described earlier, with either Jensen [Figs. 7(a) and 7(b)] or Gaus-
sian [Figs. 7(c) and 7(d)] wake data used to initialize the model
(Warm Start, Weight Transfer) or as an additional input to the
network (Model Fusion). It can be observed that prediction errors
for these CFD-trained networks are low, with median errors in the
ranges of 1.8%–8.1% for speed and 3.0%–13.0% for AEP. Notably,
test errors are generally larger for these networks than for those
trained exclusively with flow field images generated with analytical
wake models (ref. previous sections). This may have been expected
since the CFD-predicted wake patterns (Fig. 8) are more complex
than those predicted by Jensen or Gaussian models; e.g., accelera-
tion effects due to flow blockage are not captured in the standard
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FIG. 7. Comparison of strategies for training with CFD data. (a) Speed errors, CFD + Jensen data. (b) AEP errors, CFD + Jensen data. (c) Speed errors, CFD + Gaussian
data. (d) AEP errors, CFD + Gaussian data.

Jensen or Gaussian wake models but are clearly visible in the CFD
results.

Confidence intervals (95%) for the medians of the error distri-
butions, represented by boxplot notches, are also shown in Fig. 7.
Comparing these confidence intervals, it can be observed that there
is a statistically significant difference between the median errors
(1.8% for velocity and 3.0% for AEP) of the Model Fusion strategy

based on Jensen wake data and all other strategies based on the same
data, as evidenced by the non-overlapping boxplot notches. We
also calculated the Spearman (rank) correlations between predicted
(DeepWFLO) and reference (CFD) values, resulting in a 95.1% rank
correlation for the Model Fusion strategy based on Jensen wake data,
compared with 88.1%–90.9% for the other transfer learning strate-
gies based on the same data. For the Model Fusion strategy based on

FIG. 8. Sample streamwise velocity field predictions for the W-E wind direction assumed in this paper. Note that predictions for any other wind direction can be generated by
rotating the turbine layout accordingly. (a) Jensen wake model. (b) Gaussian wake model. (c) CFD.

APL Mach. Learn. 2, 016111 (2024); doi: 10.1063/5.0168973 2, 016111-10

© Author(s) 2024

 16 February 2024 09:03:28

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 9. Optimized turbine layouts using the DeepWFLO model based on Jensen and CFD data with the Model Fusion strategy. (a) nT = 15, AEP = 67.97 GW h, η = 99.7%.
(b) nT = 20, AEP = 89.57 GW h, η = 98.6%.

Gaussian wake data, the median speed and AEP errors (4.0% and
5.9%) are still lower than other strategies based on the same data,
though this difference in medians does not reach statistical signifi-
cance. However, the Spearman correlation coefficient for this model
fusion strategy was 92.3%, compared with 86.7% and 87.3% for the
warm start and weight transfer strategies, respectively.

Notably, in all cases, the transfer learning strategies tested here
resulted in lower median errors than training the DeepWFLO model
exclusively on CFD data. Moreover, the rank correlation coefficients
between predicted and reference (CFD) speed and AEP values were
all above 88.0%, with the model fusion strategy based on Jensen
wake data exhibiting the largest correlation coefficient, 95.1%. These
results suggest that the proposed DeepWFLO architecture is suit-
able for predicting the wind velocity field inside a wind farm and
provide evidence that an ensemble of wake models (e.g., Jensen and
CFD) can result in low prediction errors and large rank correlations
between predicted and reference values. Interestingly, the Deep-
WFLO network trained with the Model Fusion strategy achieved
great accuracy while relying only on 128 CFD simulations (of which
only 104 were used for training) and leveraging data generated
with the lower-fidelity Jensen analytical model. In comparison with
the CFD Only strategy, Model Fusion achieved approximately a 4X
improvement in accuracy for the same dataset size. Therefore, it can
be said that the model fusion strategy is 4X more data-efficient.

G. Optimization
As an illustration of the capabilities of the Model Fusion Deep-

WFLO model, we solved a wind farm layout optimization (WFLO)
problem. In particular, we use the wind farm case described in
Sec. IV and aim to optimally place nT turbines (nT ∈ {15, 20})
within the wind farm boundaries while enforcing a minimum inter-
turbine distance constraint of 5D, where D is the turbine diameter.
Formally, let x = (x1, y1, . . . , xnT , ynT ) be a vector concatenating the
2D coordinate pairs (xi, yi) of all turbines, i ∈ {1, 2, . . . , nT}. The
WFLO problem is posed as

arg max
x

AEP(x)

subject to (xi, yi) ∈ [0, 2000] × [0, 2000], ∀ i ∈ {1, . . . , nT}
min

i<j
∥(xi, yi) − (xj , yj)∥ ≤ 5D,

∀ i, j ∈ {1, . . . , nT}, i < j.

(11)

An μ + λ evolutionary algorithm (EA) was selected to solve
this problem based on its demonstrated performance in the exten-
sive literature on WFLO and our own previous experiences.7,9 Since
the evolutionary strategies do not handle optimization constraints
directly, the objective function was modified to include inter-turbine
distance constraints via the penalty method. Let dmin be the mini-
mum distance between turbines in a given layout, then the WFLO
problem is reformulated as

arg max
x

AEP(x) + C(5D − dmin)

subject to (xi, yi) ∈ [0, 2000] × [0, 2000], ∀ i ∈ {1, . . . , nT},
(12)

where C is the penalty parameter. In this work, we set the penalty
coefficient C = 0.05∗AEPideal∗(1 − 5Dd−1

min) to be a function of the
maximum (ideal) AEP for the test case, i.e., which would be attained
if there were no wake effects. This allows us to ensure that as the
solution approaches the feasibility boundary, the size of the penalty
is a small percentage of the objective function value.

Figures 9(a) and 9(b) show flow fields, AEP, and wind farm
efficiency (η) corresponding to the optimal layouts for 15 and
20 turbines, respectively, as predicted by the most accurate Deep-
WFLO Model Fusion model (based on Jensen and CFD data). The
wind farm efficiency is calculated as the ratio between the AEP and
AEPideal, resulting in 99.7% and 98.6% for the cases with 15 and 20
turbines, respectively. These efficiencies show that turbines in the
optimal layouts are not significantly exposed to wake effects in any
of the cases.
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VI. CONCLUSIONS
In this work, we presented DeepWFLO, a deep convolutional

hierarchical encoder–decoder neural network architecture for Wind
Farm Layout Optimization (WFLO). DeepWFLO generates accu-
rate images of the wind velocity field within wind farms, using
image representations of the turbine layout and undisturbed flow
field as inputs. To train the DeepWFLO architecture, a loss func-
tion was proposed as a linear combination of mean-squared losses
for the velocity field and the annual energy production (AEP).
Results show that a relative weighting of 80%/20% of the AEP and
velocity losses decreased AEP errors over the test set from 2.7%
to 1% without increasing velocity errors. Using this loss function,
the DeepWFLO architecture was optimized with a multi-objective
genetic algorithm to minimize both velocity errors and network
size. The resulting optimal DeepWFLO architecture was shown to
be highly accurate when trained with data generated by analyti-
cal wake models (median velocity error below 1%) and by CFD
simulations (median velocity error ∼8%). Importantly, Spearman
(rank) correlation coefficients between predicted and reference AEP
were 99.9% and 88.1% for models trained with data from either
analytical wake models or CFD data, respectively. This provides
evidence for the suitability of DeepWFLO for surrogate-based opti-
mization applications, which require accurate relative ranking of
solutions.

Several transfer learning strategies were compared to further
reduce velocity and AEP errors in networks trained with CFD
data without increasing dataset size. The model-fusion strategy,
in which an image of the wind velocity field generated with an
analytical wake model is used as an additional input channel, out-
performed the commonly used weight transfer and warm start
strategies. Model fusion decreased velocity errors to 1.8% and
increased the rank correlation between predicted and reference AEP
to 95.1% for a DeepWFLO network trained with data from 104 CFD
simulations.

Overall, the present work has demonstrated the feasibility
of DeepWFLO and image-to-image regression in general to pre-
dict wind velocity and energy generation in wind farms based
on a combination of analytical wake models and a small set
of computationally expensive CFD simulations. We believe that
Im2Im regression has great potential for the synergistic inte-
gration of neural network technologies and CFD simulations to
support engineering design and optimization tasks in general,
particularly in those applications in which (a) alternative design
configurations can be intuitively represented as images (e.g., design
of layouts, shapes, structural topologies, etc.), (b) system per-
formance is evaluated based on functionals (e.g., integrals or
convolutions) of spatiotemporal fields (e.g., flow velocity, pres-
sure, temperature, density), and (c) system performance is highly
dependent on local interactions that decay with distance and are
translation-invariant.50
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